
Summary
Introduction

 Computer Vision studies the analysis of digital images and videos. The corresponding

research field offers an increasing range of possibilities for human computer

interaction, artificial intelligence and the visual examination of complex processes.

 Existing libraries such as OpenCV or Emgu CV offer access to a substantial number of

solutions for image segmentation, object recognition and motion analysis. However,

most algorithms demand a significant amount of computing resources and are

documented and implemented for CPU based operations that do not benefit from

contemporary hardware acceleration. This architectural drawback is responsible for

unnecessary data bottlenecks, occupies computational resources and reduces the

amount of data that can be processed.

 This thesis proposes a hardware accelerated implementation of optical flow to discuss

the benefits of highly parallel computing structures for image processing. Optical Flow

is a motion analysis procedure to detect movement in camera images by comparing two

consecutive frames. Image stabilization, feature tracking and the monitoring of

assembly lines are some of its common applications.

 In order to illustrate the contribution of our research, we will introduce our GPU

implementations for two different optical flow solutions and compare them with CPU

based procedures.

Methodology

 This thesis will focus on two main solutions for Optical Flow analysis, one is based upon

the scientific publication by Horn and Schunck 1, while the other is based upon Lucas

and Kanade 2,3. Our CPU based methods are written in C++, while the GPU algorithms

are written on the GPU language HLSL.

 Horn and Schunck

 Horn and Schunck algorithms are the most popular solution for Optical Flow, and have

been used for many applications and evaluation models. This method bases its solution

on a differential technique, by including a constraint that assumes smooth flow in the

whole image. The result is achieved by computing two steps, the first one obtains an

estimation of the derivatives of the images, detecting the edges of the elements and

the differences in their position over time, while the second one follows an iterative

method to minimize the error in the final prediction of the velocity field.

 Lucas Kanade

 Lucas Kanade method is a widely used differential solution for Optical Flow. This

method is mainly used as a technique to find the local Optical Flow, that obtains the

velocity of few featured points. Lucas Kanade solution is achieved in two steps as the

previously defined method. The first step obtains the spatial-temporal derivatives of

the images, while the second step obtains the solution for the velocity field. This

method assumes that the flow is constant in a neighbourhood of pixels, and obtains a

solution for the x and y components of the velocity of every pixel by the least squares

criterion.

Discussion

 The development of the described methods for CPU and GPU allowed us to evaluate

the performance of the algorithms in both processors. Considering different resolutions

of input images that provide different levels of detail, the time of processing changed

significantly as shown in Figure .

Figure 1. Optical Flow computation in CPU and GPU

Experiments

 The acceleration of our GPU solution in reference to the CPU, offers the possibilities to

use additional computing resources to process the resulting data and increase the

accuracy of our prediction.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

16 64 256 1024 4096

ti
m

e
[s

]

resolution [pixels]

Optical Flow computation

CPU GPU

 In order to evaluate the improved quality of our implementation, we developed a

simulator to generate motion and its corresponding Optical Flow data (ground truth).

By comparing the ground truth with our estimation, we are able to determine a

significant decrease in prediction error as visualised in Figure and Figure .

Figure 2. MSE evaluation between original and improved HS method

Figure 3. MSE evaluation between original and improved LK method

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

MSE - Horn and Schunck
time processing CPU = 0.0103
time processing GPU = 0.0008

CPU

GPU

0

0.05

0.1

0.15

0.2

0.25

0.3

MSE - Lucas Kanade
time processing CPU = 0.0106
time processing GPU = 0.0009

CPU

GPU

Conclusions

 The necessity of managing a massive amount of image data, represented as pixels,

makes the highly parallel structure of GPUs more efficient than other processing units.

The increase of performance and quality of the proposed methods, represent a valuable

advantage for real time applications. Our solution offers the evaluation of optical flow

for each pixel even in high resolution. The corresponding processing time is fast enough

to process live feeds from high speed cameras and post process the resulting data.

 Therefore, we are able to efficiently reduce computing overloads and bottlenecks. The

resulting methods could potentially reduce costs in several fields, such as machine

vision, human computer interaction or accelerate the ongoing trend of device

miniaturization.

